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Rolling as a “continuing collision”
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Abstract. We show that two basic mechanical processes, the collision of particles and rolling motion of a
sphere on a plane, are intimately related. According to our recent findings, the restitution coefficient for
colliding spherical particles ε, which characterizes the energy loss upon collision, is directly related to the
rolling friction coefficient µroll for a viscous sphere on a hard plane. We quantify both coefficients in terms
of material constants which allows to determine either of them provided the other is known. This relation
between the coefficients may give rise to a novel experimental technique to determine alternatively the
coefficient of restitution or the coefficient of rolling friction.

PACS. 81.05.Rm Porous materials; granular materials – 83.70.Fn Granular solids

Is the collision of two spheres related to rolling motion of
a sphere on a plane? Probably the answer will be “No”,
if the idealised version of these two basic processes (i.e.
absolutely elastic collision and ideal rolling without any
resistance) is assumed. However, in reality neither ideal
collision nor ideal rolling occur since in both processes
mechanical energy is lost according to dissipative material
deformation. Quantifying the losses a profound similarity
of these two processes has been revealed. It results in a
relation between quantities describing energy loss due to
collision and rolling and provides a novel view on rolling
which may be considered as a continuing collision.

It is well-known since Newton’s times that two balls
colliding with velocities v1 and v2 have smaller after-collis-
ional velocities v′1 and v′2 as compared with the perfectly
elastic collision. The decrease of the particle velocity or
in other words the loss of mechanical energy is described
by the coefficient of restitution ε. For a pair of identical
particles colliding on a line one has:

v′1 = v1 −
1 + ε

2
g,

v′2 = v2 +
1 + ε

2
g (1)

where g = v1− v2 is the initial relative velocity. The ideal
elastic collision is described by ε = 1, so that v′1 = v2 and
v′2 = v1. The relative velocity g = v1 − v2 changes at the
collision as

g′ = −εg. (2)
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We want to remark that for the more general case of a
collision equations (1, 2) hold true but the pre- and after-
collisional velocities are vectors v1/2, v′1/2 while g and g′

are the pre- and after-collisional relative normal velocities

g = [(v1 − v2) · e] e (3)
g′ = [(v′1 − v′2) · e] e

where e = (r1 − r2)/ |r1 − r2| with r1/2 being the particle
positions at the instant of collision.

The non-ideal character of the collision originates from
the dissipative force

Fdiss =
3
2
Aρ

√
ξξ̇ (4)

acting on the colliding spheres which has been derived
recently [1–3]. Here, ξ is the time-dependent compression
of the particles during the collision

ξ = 2R− |r1 − r2| (5)

with R being the radius of the spheres, see Figure 1. The
material constant ρ depends on the Young modulus Y and
Poisson ratio ν of the particle material as

ρ =
2Y

3(1− ν2)

√
R/2. (6)

The constant A is expressed in terms of the elastic and
viscous material constants [1]. The dissipative force always
acts against the relative velocity ξ̇ of the particles, so that
elastic energy stored during the collision is not completely
reconverted into kinetic energy after the collision. In linear
approximation with respect to the dissipative parameter
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Fig. 1. Sketches of two colliding spheres and of a rolling sphere.
Origination of the rolling friction moment due to the dissipative
stress is shown.

A the solution of the collision problem which accounts for
the dissipative force yields for the restitution coefficient [4]

1− ε = C1

(
3A
2

)(
2ρ
m

)2/5

g1/5 ± · · · (7)

with [4,5]

C1 =
Γ (3/5)

√
π

21/552/5Γ (21/10)
= 1.15344. (8)

Γ (x) is the Gamma-function and m is the mass of the
(identical) particles. Hence, the restitution coefficient for
viscoelastic collisions depends sensitively on the normal
component of the relative velocity g as described by
equation (7).

Each collision of particles certainly terminates after
some time if attractive forces are excluded, but one can
ask, whether some “collision” can proceed permanently.

In spite of being far from apparent one can show that
the mechanics of a rolling sphere on a hard plane is in-
trinsically similar to that of a collision [6] provided the
main part of the dissipation originates from viscoelastic
bulk deformations of the sphere [7–9]. Indeed, when a soft
sphere rolls we notice the same sequence of compression
and subsequent decompression as in the collision process.

Thus, in rolling motion, which one can treat as a “con-
tinuing” collision, we observe a steady dissipation due to
incomplete retransformation of elastic energy during de-
compression. This results in a rolling friction moment M ,
which acts against the motion:

M = µrollF
N (9)

(see Fig. 1). Here, FN is the normal force exerted by the
plane onto the sphere caused by the sphere’s own weight.
Calculations performed for a soft sphere rolling on a hard
(undeformable) plane reveal that

µroll = AV, (10)

where V is the sphere’s linear velocity and A is exactly
the same material constant as in the law of collision [6].
The relation (10) has been obtained for the case when
the deformation of the rolling sphere is small compared
to its radius, the velocity V is much less than the speed
of sound in the material, and when the relaxation time of
the rolling process, estimated as the ratio of the sphere
deformation and the velocity V is much larger than the
dissipative relaxation times of the viscoelastic material [6].

Thus,

1− ε
b (ρ/m)2/5 g1/5

=
µroll

V
(11)

with

b = 3C1/23/5 = 2.28296 (12)

relates the rolling friction coefficient µroll to the coefficient
of normal restitution ε for identical particles colliding with
relative velocity g.

The linear equation (11) refers to the case of small im-
pact velocities of the colliding spheres. This situation is
the most favourable for performing experimental studies.
One can, however, apply a more general nonlinear relation
which accounts for high-order corrections of the dissipa-
tive parameter A. This follows from the high-order expan-
sion for the restitution coefficient [5]:

1− ε = C1

(
3A
2

)(
2ρ
m

)2/5

g1/5

− C2

(
3A
2

)2(2ρ
m

)4/5

g2/5

+ C3

(
3A
2

)3(2ρ
m

)6/5

g3/5

− C4

(
3A
2

)4(2ρ
m

)8/5

g4/5 ± · · · (13)

where [5]

C2 = 3/5C2
1

C3 = 0.315119C3
1

C4 = 0.161167C4
1.
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Introducing then

Z ≡ b
( ρ
m

)2/5

g1/5 µroll

V
(14)

one can write the generalization of the linear equa-
tion (11) as

1− ε
Z

= 1− 0.6Z + 0.315119Z2− 0.161167Z3± · · ·
(15)

Physically the relations (11, 15) are based on the intrinsic
mechanical similarity of the collision and rolling processes.
In practice equation (11) (or (15)) may be used to deter-
mine either of coefficients ε or µroll provided the other one
is known.

The measurement of restitution coefficients for spheres
is a complicated experimental problem, in particular if
one is interested in collisions at very low impact velocity,
e.g. [10]. These values are of great importance in several
problems, e.g. for the description of the kinetics of plan-
etary ring material where the particles typically collide
with velocities of the range

(
10−2 . . . 10−3

)
m/s. The de-

rived relation between the coefficient of rolling friction and
the coefficient of normal restitution allows to determine
the latter value by measuring the resistance of a sphere
against rolling on a hard plane which might be experi-
mentally less complicated.

The authors want to thank Michel Louge and Thomas
Schwager for helpful discussion
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